Modern Security Risk

Common Security Practices: Analysis

Lists of Risks

Overlaps

Gaps

Assumes independence

Category Labels

Imprecise

Unreliable

Range compression

Single Likelihood Estimates

Implies precision

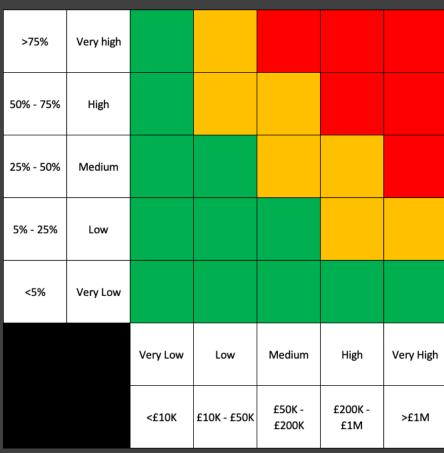
Hides uncertainty

Worst Case Estimates

Aggregation of risks unbelievable

Likely to be in the tail of the risk

Probability X Impact


Doesn't reflect reality

Common Security Practice: Presentation

Risk Matrix

Throws away data
Does not allow aggregation
Often uses log scales
Saw-tooth tolerance

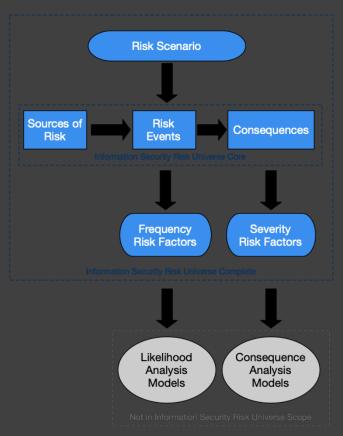
How bad is a yellow risk? How many yellows are a red worth? Is a thousand green risks acceptable?

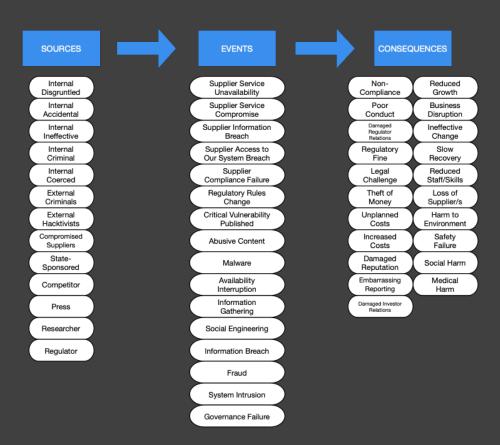
Levels of Uncertainty in Risk

Level 0	Level 1	Level 2
Identification of HazardFailure ModeIdentification	Worst CaseCybergeddon	Plausible Upper BoundWhat is a reasonable worst case?
Level 3	Level 4	Level 5

From: M Elisabeth Pate-Cornell, 1996, Uncertainties in Risk Management: Six Levels of Treatment

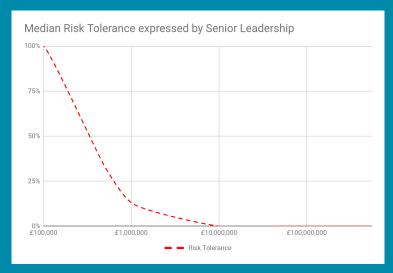
Modern Risk Practices: Calibrated Estimation


Accuracy (Calibration) beats precision (Discrimination). Both are good to have.


Expert estimates are by nature subjective, uncertain and biased, there are ways to counter this:

- Measuring internal & external base-rate data to indicate risk factors
 Lots of data available but discrimination and analysis required.
- Internal & external expert estimation
- Panel-based estimation
- Delphi technique
- Risk calibration training for experts
 90% confidence interval, avoid anchoring
 General knowledge tests
- Brier Scores for annual feedback

Modern Risk Practices: Risk Universe


There is a risk that <**source**> causes <**event**> that causes <**consequence**>.

From: Open Information Security Risk Universe https://github.com/oracuk/oisru

Modern Risk Practices: Tolerance Curve

Avoid forcing stakeholders to do maths in their head.

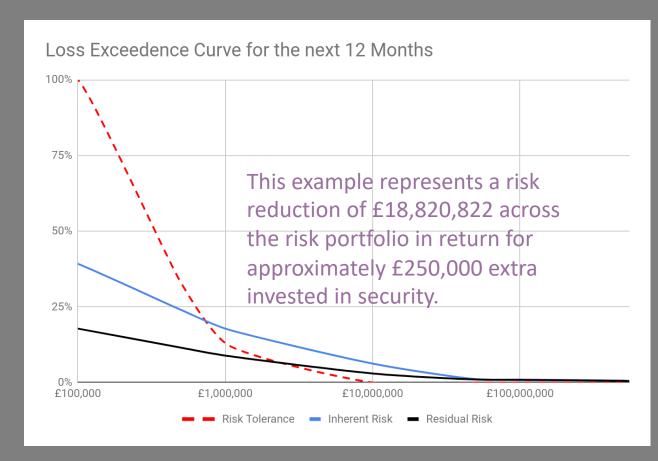
Avoid qualitative descriptors, they are interpreted differently by different people.

Median value handles overly risk hungry executives, weighting executive scores by ownership also appropriate.

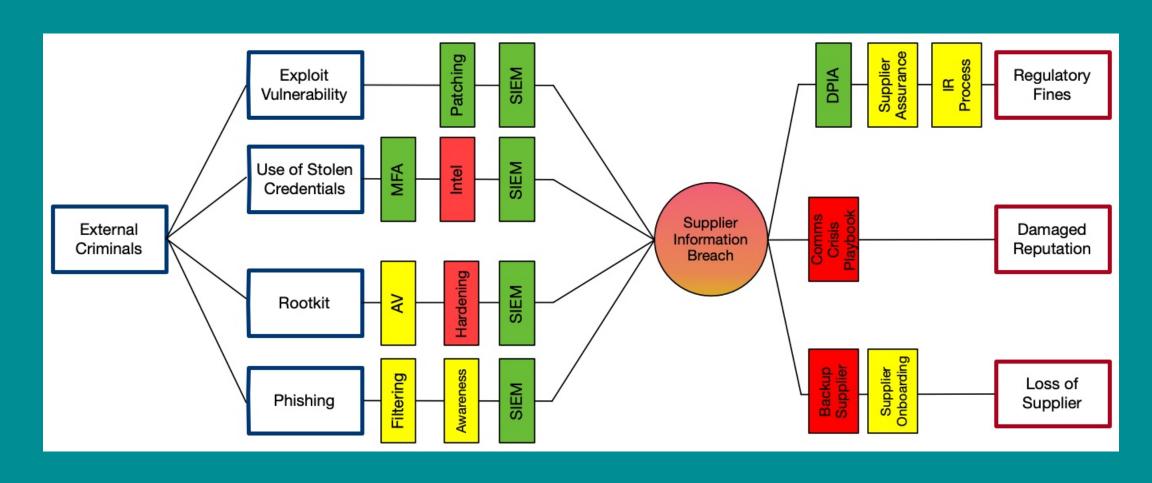
Expected Rate of Occurrence / Frequency	Monthly Likelihood	Annual Likelihood
Once a month	100.00%	12 × 100%
Once a quarter	33.33%	4 x 100%
Once every six months	16.67%	2 x 100%
Once a year	8.33%	100%
Once every two years	4.17%	50%
Once every three years	2.78%	33.33%
Once every five years	1.67%	20.00%
Once every ten years	0.83%	10.00%
Once every fifteen years	0.55%	6.66%%

CISO Mentor Ltd

Modern Risk Practices: Quantitative Analysis


Likelihood, minimal harm and maximal harm estimates.

Standard Monte Carlo simulation run tens of thousands of times and combined.


Lognormal distribution for harm.

Simulate both risks individually and as a portfolio of risk.

Aggregate the risk exposure for board consideration.

Modern Risk Practices: Bow-Tie Diagram

Further Reading

Books:

How to Measure Anything in Cybersecurity Risk, Hubbard & Seiersen

Measuring and Managing Information Risk: A FAIR Approach, Freund & Jones

Uncertain Judgements: Eliciting Experts' Probabilities, O'Hagan

Risk Assessment and Decision Analysis with Bayesian Networks, Fenton & Neil

Groups:

Society of Information Risk Analysts (SIRA)

FAIR Institute

Cyentia Institute

Standards:

ISO 31010 - Risk Management - Risk Assessment Techniques

Sites

https://magoo.github.io/simple-risk/

http://blog.blackswansecurity.com/category/risk/

Papers:

A New Approach for Managing Operational Risk, Society of Actuaries

Information Risk Insights Study (IRIS 20/20), Cyentia Institute

Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art? Terje Aven

Uncertainties in Risk Management: Six Levels of Treatment, M Elisabeth Pate-Cornell

The risk concept—historical and recent development trends, Terje Aven

What's Wrong with Risk Matrices?, Louis Anthony (Tony)Cox Jr

Estimation of losses due to cyber risk for financial institutions, Antoine Bouveret

Hype and heavy tails: A closer look at data breaches, Edwards, Hofmeyr & Forrest

Delphi, Norman C. Dalkey

Judgemental Decomposition: When does it work? MacGregor & Armstrong

Lessons learned from the real world application of the Bow-tie method, Risktec

Supporting on-going capture and sharing of digital event data, CRO Forum

Reference Incident Classification Taxonomy: Task Force Status and Way Forward, ENISA

Quantitative Techniques in Information Risk Analysis, ISF

Thank you

Phil Huggins, Director, CISO Mentor Ltd phil@cisomentor.com www.cisomentor.com